3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:
(1)选其中5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体站成一排,男、女各站在一起;
(4)全体站成一排,男生不能站在一起;
(5)全体站成一排,甲不站排头也不站排尾.
解 (1)问题即为从7个不同元素中选出5个全排列,有A=2 520(种)排法.
(2)前排3人,后排4人,相当于排成一排,共有A=5 040(种)排法.
(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A种排法;女生必须站在一起,是女生的全排列,有A
种排法;全体男生、女生各视为一个元素,有A
种排法,由分步乘法计数原理知,共有A
·A
·A
=288(种).
(4)不相邻问题(插空法):先安排女生共有A种排法,男生在4个女生隔成的五个空中安排共有A
种排法,故A
·A
=1 440(种).
(5)先安排甲,从除去排头和排尾的5个位中安排甲,有A=5种排法;再安排其他人,有A
=720(种)排法.所以共有A
·A
=3 600(种)排法.
分类原理:
完成一件事,有n类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,…,在第n类方法中有mn种不同的方法,那么完成这件事共有不同的方法。
注:每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事。
1、分类原理:完成一件事,有n类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,…,在第n类方法中有mn种不同的方法,那么完成这件事共有不同的方法。
注:每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事。
2、分类原理题型比较杂乱,几种常见的现象有:
①开关现象:要根据开启或闭合开关的个数分类;
②数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数;
③球赛得分:根据胜或负场次进行分类。
分类原理题型比较杂乱,几种常见的现象有:
①开关现象:要根据开启或闭合开关的个数分类;
②数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数;
③球赛得分:根据胜或负场次进行分类。
分类的原则:
分类计数时,首先要根据问题的特点,确定一个适当的分类标准,然后利用这个分类标准进行分类,分类时要注意两条基本原则:一是完成这件事的任何一种方法必须分为相应的类;二是不同类的任何方法必须是不同的方法,只要满足这两条基本原则,就可以确保计数的不重不漏.
特别提醒:
①明确题目中所指的"完成一件事"是指什么事,完成这件事可以有哪些办法,怎样才算完成这件事.
②完成这件事的n种方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.
③确立恰当的分类标准,准确地对这件事进行分类,要求第一种方法必定属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须做到既不重复也不遗漏.
④分类加法计数原理的集合表述形式:做一件事,完成它的办法用集合S表示,S被分成n类办法,分别用集合种不同的方法,即集合
个元素,那么完成这件事共有的方法,即集合S中的无素的个数为
登录并加入会员可无限制查看知识点解析