已知E、F、G、H是空间内四个点,条件甲:E、F、G、H四点不共面,条件乙:直线EF和GH不相交,则甲是乙成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
A
[解析] 点E、F、G、H四点不共面可以推出直线EF和GH不相交;但由直线EF和GH不相交不一定能推出E、F、G、H四点不共面,例如:EF和GH平行,这也是直线EF和GH不相交的一种情况,但E、F、G、H四点共面.故甲是乙成立的充分不必要条件.
在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,若EF与GH交于点M,则( )
A.M一定在AC上
B.M一定在BD上
C.M可能在AC上也可能在BD上
D.M不在AC上,也不在BD上
[答案] A
[解析] 点M在平面ABC内,又在平面ADC内,故必在交线AC上.
若直线l不平行于平面α,且l⊄α,则( )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α内存在唯一的直线与l平行
D.α内的直线与l都相交
B
[解析] 由题意知直线l与平面α相交,不妨设直线l∩α=M,对A,在α内过M点的直线与l不异面,A错误;对B,假设存在与l平行的直线m,则由m∥l得l∥α,这与l∩α=M矛盾,故B正确,C错误;对D,α内存在与l异面的直线,故D错误.综上知选B.
平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为( )
A.3 B.4
C.5 D.6
C
[解析] 如图,平行六面体ABCD-A1B1C1D1中,既与AB共面,也与CC1共面的棱为BC、C1D1、DC、AA1、BB1,共5条.
已知平面α和不重合的两条直线m、n,下列选项正确的是( )
A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥α
B.如果m⊂α,n与α相交,那么m、n是异面直线
C.如果m⊂α,n∥α,m、n共面,那么m∥n
D.如果m⊥α,n⊥m,那么n∥α
C
[解析] 如图(1)可知A错;如图(2)可知B错;如图(3),m⊥α,n是α内的任意直线,都有n⊥m,故D错.
∵n∥α,∴n与α无公共点,∵m⊂α,∴n与m无公共点,又m、n共面,∴m∥n,故选C.
本卷还有23题,登录并加入会员即可免费使用哦~
该作品由: 用户赵云分享上传
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。