有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线. 过有心曲线的中心的弦叫有心曲线的直径,(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-1.
(Ⅰ)写出该定理在椭圆中的推广,并加以证明;
(Ⅱ)写出该定理在双曲线中的推广;你能从上述结论得到有心圆锥曲线(包括椭圆、双曲线、圆)的一般性结论吗?请写出你的结论.
解:(Ⅰ)设直径的两个端点分别为A、B,由椭圆的对称性可得,A、B关于中心O(0,0)对称,所以A、B点的坐标分别为A(,B(.
P(上椭圆上任意一点,显然,
因为A、B、P三点都在椭圆上,所以有
, ①
, ②.
而,
由①-②得:.
所以该定理在椭圆中的推广为:过椭圆上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值.
(Ⅱ)在双曲线中的推广为:过双曲线上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值
该定理在有心圆锥曲线中的推广应为:过有心圆锥曲线上异于 直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-
归纳推理的定义:
根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;
类比推理的定义:
由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫做类比推理(简称类比)。类比推理是由特殊到特殊的推理。
类比推理的一般步骤:
(1)找出两类事物之间的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;
(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。
归纳推理的一般步骤:
①通过观察个别情况发现某些相同性质;
②从已知的相同性质中推出一个明确表达的一般性命题(猜想).
归纳推理和类比推理的特点:
归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理。
归纳推理的应用方法:
归纳推理是由部分到整体、由个别到一般的推理,要注意探求的对象的本质属性与因果关系.与数列有关的问题,要联想等差、等比数列,把握住数的变化规律.
类比推理的应用方法:
合情推理的正确与否来源于平时知识的积累,如平面到空间、长度到面积、面积到体积、平面中的点与空间中的直线、平面中的直线与空间巾的平面.
登录并加入会员可无限制查看知识点解析