已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的外接圆(点为圆心)
(I)求圆的方程;
(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值.
本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力。
(Ⅰ)解法一:设A、B两点坐标分别为(),(),由题设知
,
解得,
所以A(6,2),B(6,-2)或A(6,-2),B(6,2)。
设圆心C的坐标为(r,0),则,所以圆C的方程为
解法二:设A、B两点坐标分别为(x1,y1),(x2,y2),由题设知
又因为,可得,即
。
由,可知x1=x2,故A、B两点关于x轴对称,所以圆心C在x轴上,
设C点的坐标为(r,0),则A点的坐标为(),于是有,解得r=4,所以圆C的方程为 。
(Ⅱ)解:设∠ECF=2a,则
在Rt△PCE中,,由圆的几何性质得
所以,由此可得
故,最小值为-8
曲线的方程的定义:
在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
求曲线的方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件的p(M)的集合,P={M|p(M)};
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明化简后的方程的解为坐标的点都在曲线上。
求曲线的方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件的p(M)的集合,P={M|p(M)};
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明化简后的方程的解为坐标的点都在曲线上。
求曲线方程的常用方法:
(1)待定系数法这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。
(2)直译法就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。(3)定义法就是由曲线的定义直接得到曲线方程。
(4)交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。
(5)参数法就是通过中间变量找到y、x的间接关系,然后通过消参得出其直接关系。
(6)相关点法就是通过所求动点与已知动点的关系,来求曲线方程的方法。
登录并加入会员可无限制查看知识点解析