设P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=2, a2=2, …, an=2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.
(1)若C的方程为-y2=1,n=3. 点P1(3,0) 及S3=162, 求点P3的坐标;(只需写出一个)
(2)若C的方程为y2=2px(p≠0). 点P1(0,0), 对于给定的自然数n, 证明:(x1+p)2, (x2+p)2, …,(xn+p)2成等差数列;
(3)若C的方程为(a>b>0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值.
符号意义 | 本试卷所用符号 | 等同于《实验教材》符号 |
向量坐标 | ={x,y} | =(x,y) |
正切 | tg | tan |
解:(1) a1=2=9,由S3=(a1+a3)=162,得a3=3=99.
由 | -y2=1 | ,得 | x=90 |
x+y=99 | y=9 |
∴点P3的坐标可以为(3,3).
(2)对每个自然数k,1≤k≤n,由题意2=(k-1)d,及
y=2pxk | ,得x+2pxk=(k-1)d |
x+y=(k-1)d |
即(xk+p)2=p2+(k-1)d,
∴(x1+p)2, (x2+p)2, …,(xn+p)2是首项为p2,公差为d的等差数列.
(3) 解法一:原点O到二次曲线C:(a>b>0)上各点的最小距离为b,最大距离为a.
∵a1=2=a2, ∴d<0,且an=2=a2+(n-1)d≥b2,
∴≤d<0. ∵n≥3,>0
∴Sn=na2+d在[,0)上递增,
故Sn的最小值为na2+・=.
解法二:对每个自然数k(2≤k≤n),
由 | x+y=a2+(k-1)d | ,解得y= |
+=1 |
∵0< y≤b2,得≤d<0 ∴≤d<0 以下与解法一相同.
平面的概念:
平面是无限伸展的;
平面的表示:
通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
平面的画法:
①通常把水平的平面画成锐角为45。,横边长等于其邻边长2倍的平行四边形,如图1所示.②如果一个平面被另一个平面挡住,则被遮挡的部分用虚线画出来,如图2所示,
平面的性质:
(1)公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。
用符号语言表示公理1:。
应用:判断直线是否在平面内
(2)公理2:过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:它是空间内确定平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言:P∈α,且P∈βα∩β=l,且P∈l。
公理3的作用:①它是判定两个平面相交的方法;
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点;
③它可以判断点在直线上,即证若干个点共线的重要依据。
立体几何问题的重要方法:
根据平面的基本性质,把空间图形转化为平面图形来解决,这是立体几何中解决问题的重要思想方法.通常要解决以下四类问题:
(l)证明空间三点共线问题:证明这类问题一般根据公理3证明这些点都在两个平面的交线上,即先确定出某两个点在某两个平面上,再证明第三个点既在第一个平面内,又在第二个平面内,当然必在两平面的交线上.
(2)证明空间三线共点问题:证明这类问题一般根据公理l和公理3,把其中一条直线作为分别通过其余丽条直线的两个平面的交线,然后证明两条直线的交点在此直线上.
(3)证明空间点共面问题:可根据公理2,先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.
(4)证明空间直线共面问题一般根据公理2及推论,先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者由这些直线中取适当的两条确定若干个平面,再一一确定这些平面重合.
基本性质2及其三个推论可以用来证明点、线共面,证明此类问题,常用的方法有:
①纳入法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,再证明其余的点和直线也在这个确定的平面内.
②同一法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,另一些点和直线在另外一个确定的平面内,……,最后证明这些平面重合.
③反证法:可以假设这些点和直线不在同一个平面内,然后通过推理,找出矛盾,从而否定假设,肯定结论.
点线面位置关系的符号语言如下表:
登录并加入会员可无限制查看知识点解析