给定有限个正数满足条件:每个数都不大于50且总和=1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:
首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差与所有可能的其他选择相比是最小的,称为第一组余差;
然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为;如此继续构成第三组(余差为)、第四组(余差为)、……,直至第组(余差为)把这些数全部分完为止.
(I)判断的大小关系,并指出除第N组外的每组至少含有几个数
(II)当构成第组后,指出余下的每个数与的大小关系,并证明;
(III)对任何满足条件T的有限个正数,证明:.
解:(I).除第N组外的每组至少含有个数.
(II)当第n组形成后,因为,所以还有数没分完,这时余下的每个数必大于余差,余下数之和也大于第n组的余差,即
,
由此可得.
因为,所以.
(III)用反证法证明结论,假设,即第11组形成后,还有数没分完,由(I)和(II)可知,余下的每个数都大于第11组的余差,且,
故余下的每个数 . (*)
因为第11组数中至少含有3个数,所以第11组数之和大于,
此时第11组的余差,
这与(*)式中矛盾,所以.