(2009福建卷文)设,
,
为同一平面内具有相同起点的任意三个非零向量,且满足
与
不共线,
∣
∣=∣
∣,则∣
•
∣的值一定等于 ( )
A.以,
为邻边的平行四边形的面积
B. 以,
为两边的三角形面积
C.,
为两边的三角形面积
D. 以,
为邻边的平行四边形的面积
答案 A
解析 假设与
的夹角为
,∣
•
∣=︱
︱·︱
︱·∣cos<
,
>∣
=︱︱·︱
︱•∣cos(90
)∣=︱
︱·︱
︱•sin
,即为以
,
为邻边的平
行四边形的面积.
两个向量的夹角的定义:
对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
两个向量数量积的含义:
如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于
的模
与
在
上的投影
的乘积。
1、两个向量的夹角:对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
2、含义:如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
3、几何意义:数量积等于
的模
与
在
上的投影
的乘积。
4、向量数量积的性质:设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
登录并加入会员可无限制查看知识点解析