已知向量=(m,2),向量
=(2,﹣3),若|
+
|=|
﹣
|,则实数m的值是( )
A.﹣2 B.3 C. D.﹣3
B【考点】平面向量数量积的运算.
【专题】计算题;平面向量及应用.
【分析】将等式两边平方,运用向量的平方即为模的平方,结合向量的数量积的坐标表示,解m的方程,即可得到.
【解答】解:若|+
|=|
﹣
|,
则(+
)2=(
﹣
)2,
即+2
=
﹣2
,
即=0,
由向量=(m,2),向量
=(2,﹣3),
则2m﹣6=0,
解得m=3.
故选:B.
【点评】本题考查向量的数量积的坐标表示和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
两个向量的夹角的定义:
对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
两个向量数量积的含义:
如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于
的模
与
在
上的投影
的乘积。
1、两个向量的夹角:对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
2、含义:如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
3、几何意义:数量积等于
的模
与
在
上的投影
的乘积。
4、向量数量积的性质:设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
登录并加入会员可无限制查看知识点解析