如图,在三棱锥S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(1)求证:AF⊥平面SBC;
(2)在线段上DE上是否存在点G,使二面角G﹣AF﹣E的大小为30°?若存在,求出DG的长;若不存在,请说明理由.
【考点】二面角的平面角及求法;直线与平面垂直的判定.
【分析】(1)通过证明AF与平面SBC内的两条相交直线垂直即可;
(2)抓住两点找到问题的求解方向:一是点G的预设位置,二是二面角G﹣AF﹣E的位置,计算即可.
【解答】(1)证明:由AC=AB=SA=2,AC⊥AB,E是BC的中点,得.
因为SA⊥底面ABC,所以SA⊥AE.
在Rt△SAE中,,所以
.
因此AE2=EF•SE,又因为∠AEF=∠AES,
所以△EFA∽△EAS,
则∠AFE=∠SAE=90°,即AF⊥SE.
因为SA⊥底面ABC,所以SA⊥BC,又BC⊥AE,
所以BC⊥底面SAE,则BC⊥AF.
又SE∩BC=E,所以AF⊥平面SBC.
(2)结论:在线段上DE上存在点G使二面角G﹣AF﹣E的大小为30°,此时DG=.
理由如下:
假设满足条件的点G存在,并设DG=t.
过点G作GM⊥AE交AE于点M,
又由SA⊥GM,AE∩SA=A,得GM⊥平面SAE.
作MN⊥AF交AF于点N,连结NG,则AF⊥NG.
于是∠GNM为二面角G﹣AF﹣E的平面角,
即∠GNM=30°,由此可得.
由MN∥EF,得,
于是有,
.
在Rt△GMN中,MG=MNtan30°,
即,解得
.
于是满足条件的点G存在,且.
平面的概念:
平面是无限伸展的;
平面的表示:
通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
平面的画法:
①通常把水平的平面画成锐角为45。,横边长等于其邻边长2倍的平行四边形,如图1所示.②如果一个平面被另一个平面挡住,则被遮挡的部分用虚线画出来,如图2所示,
平面的性质:
(1)公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。
用符号语言表示公理1:。
应用:判断直线是否在平面内
(2)公理2:过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:它是空间内确定平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言:P∈α,且P∈βα∩β=l,且P∈l。
公理3的作用:①它是判定两个平面相交的方法;
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点;
③它可以判断点在直线上,即证若干个点共线的重要依据。
立体几何问题的重要方法:
根据平面的基本性质,把空间图形转化为平面图形来解决,这是立体几何中解决问题的重要思想方法.通常要解决以下四类问题:
(l)证明空间三点共线问题:证明这类问题一般根据公理3证明这些点都在两个平面的交线上,即先确定出某两个点在某两个平面上,再证明第三个点既在第一个平面内,又在第二个平面内,当然必在两平面的交线上.
(2)证明空间三线共点问题:证明这类问题一般根据公理l和公理3,把其中一条直线作为分别通过其余丽条直线的两个平面的交线,然后证明两条直线的交点在此直线上.
(3)证明空间点共面问题:可根据公理2,先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.
(4)证明空间直线共面问题一般根据公理2及推论,先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者由这些直线中取适当的两条确定若干个平面,再一一确定这些平面重合.
基本性质2及其三个推论可以用来证明点、线共面,证明此类问题,常用的方法有:
①纳入法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,再证明其余的点和直线也在这个确定的平面内.
②同一法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,另一些点和直线在另外一个确定的平面内,……,最后证明这些平面重合.
③反证法:可以假设这些点和直线不在同一个平面内,然后通过推理,找出矛盾,从而否定假设,肯定结论.
点线面位置关系的符号语言如下表:
登录并加入会员可无限制查看知识点解析