已知椭圆.
(Ⅰ)我们知道圆具有性质:若为圆O:
的弦AB的中点,则直线AB的斜率
与直线OE的斜率
的乘积
为定值。类比圆的这个性质,写出椭圆
的类似性质,并加以证明;
(Ⅱ)如图(1),点B为在第一象限中的任意一点,过B作
的切线
,
分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(Ⅲ)如图(2),过椭圆上任意一点
作
的两条切线PM和PN,切点分别为M,N.当点P在椭圆
上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
![]() |
图(1) 图(2)
解:(Ⅰ)若A,B为椭圆上相异的两点,
为A,B中点,当直线AB
的斜率
与直线OP的斜率
的乘积
必为定值;----- -------------1分
证1:设,则
(2)-(1)得:,-----------2分
仅考虑斜率存在的情况
:
----------------------------------------4分
证2:设AB:与椭圆
联立得:
, --------------2分
所以----------4分
(Ⅱ)(ⅰ)当点A无限趋近于点B时,割线AB的斜率就等于椭圆上的B的切线的斜率,
即,
所以点B处的切线QB:----------------6分
令,
,令
,所以
-----------------8分
又点B在椭圆的第一象限上,所以
,当且仅当
所以当时,三角形OCD的面积的最小值为
-------10分(没写等号成立扣1分)
(ⅱ)设,由(ⅰ)知点
处的切线为:
又过点
,所以
,又可理解为点
在直线
上
同理点
在直线
上,所以直线MN的方程为:
--------------------------12分
所以原点O到直线MN的距离,----------13分
所以直线MN始终与圆相切. ------------------------14分
曲线的方程的定义:
在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
求曲线的方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件的p(M)的集合,P={M|p(M)};
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明化简后的方程的解为坐标的点都在曲线上。
求曲线的方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;
(2)写出适合条件的p(M)的集合,P={M|p(M)};
(3)用坐标表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明化简后的方程的解为坐标的点都在曲线上。
求曲线方程的常用方法:
(1)待定系数法这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。
(2)直译法就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。(3)定义法就是由曲线的定义直接得到曲线方程。
(4)交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。
(5)参数法就是通过中间变量找到y、x的间接关系,然后通过消参得出其直接关系。
(6)相关点法就是通过所求动点与已知动点的关系,来求曲线方程的方法。
登录并加入会员可无限制查看知识点解析