已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.
详解:(Ⅰ)由角的终边过点
得
,
所以.
(Ⅱ)由角的终边过点
得
,
由得
.
由得
,
所以或
.
点睛:三角函数求值的两种类型:
(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.
(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.
①一般可以适当变换已知式,求得另外函数式的值,以备应用;
②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.
角的概念的推广:
(1)平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
(2)正角:按逆时针方向旋转所形成的角叫正角;
(3)负角:按顺时针方向旋转所形成的角叫负角;
(4)零角:当一条射线没有作任何旋转时叫做零角,射线的起始位置称为始边,终止位置称为终边。
(5)角的记法:角α或∠α,也可以简记为α。
角的说明:
(1)在不引起混淆的前提下,“角α”或“∠α”可以简记为α.
(2)角的这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”。在日常生活中,在生产和科学实验中,还要经常遇到大于360度的角,以及按照不同方向旋转而成的角。
(3)零角的始边和终边重合。
(4)“正角”与“负角”——这是由旋转的方向所决定的。
(5)以终边位置的异同作为分类标准.
登录并加入会员可无限制查看知识点解析