以下判断正确的是( )
A. 函数为上可导函数,则是为函数极值点的充要条件
B. 命题“”的否定是“”
C. “”是“函数是偶函数”的充要条件
D. 命题“在中,若,则”的逆命题为假命题
C
【解析】
对于,函数为上可导函数,则是为函数极值点的必要不充分条件,如,满足,但不是函数的极值点,故错误;对于,命题“”的否定是“”,故错误;对于,若,则,,函数为偶函数,反之,若函数是偶函数,则,即,“”, 是“函数是偶函数”,的充要条件,故正确;对于,在中,若“,则,” 的逆命题为“若,则”,由正弦定理可知,在中,,逆命题为真命题,故错误,故选C.
基本定理:
若函数f(x)在[a,b]上连续,且存在原函数F(x),即,则f在[a,b]上可积,且,这称为牛顿-莱布尼茨公式,它也常写成。
基本积分公式:
登录并加入会员可无限制查看知识点解析