已知向量 , ,且 与 共线,则 ( )
A . B . C . 1 D . 2
A
【分析】
计算 和 的坐标,由向量共线的坐标表示列方程即可求解 .
【详解】
因为 , ,
所以 . ,
因为 与 共线,
所以 ,
解得: ,
故选: A.
两个向量的夹角的定义:
对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,
当时,垂直。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于的模与在上的投影的乘积。
1、两个向量的夹角:对于非零向量,,作称为向量,的夹角,当=0时,,同向,当=π时,,反向,
当时,垂直。
2、含义:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
3、几何意义:数量积等于的模与在上的投影的乘积。
4、向量数量积的性质:设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
登录并加入会员可无限制查看知识点解析