下载试题
当前位置:
学科首页
>
选修4系列
>
矩阵与变换
>
试题详情
难度:
使用次数:146
更新时间:2022-11-08
纠错
1.

关于 的二元一次方程组 的增广矩阵为(

A B C D

查看答案
题型:选择题
知识点:矩阵与变换
下载试题
复制试题
【答案】

C

【分析】根据二元一次方程方程组与增广矩阵的关系,即可求得结果 .

【详解】关于 的二元一次方程组 的增广矩阵为

故选: C

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 矩阵与变换 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 矩阵与变换的定义

矩阵的定义:

由m×n个数排成的m行n列的表

称为m行n列矩阵(matrix),简称m×n矩阵。

特殊形式矩阵:

(1)n阶方阵:在矩阵中,当m=n时,A称为n阶方阵;
(2)行矩阵:只有一行的矩阵叫做行矩阵;
列矩阵:只有一列的矩阵,叫做列矩阵;
(3)零矩阵:元素都是零的矩阵称作零矩阵。

二阶矩阵与平面图形的变换:
(1)二阶矩阵的定义:由4个数a,b,c,d排成的正方形数表称为二阶矩阵;
(2)几种特殊线性变换:主要有旋转变换、反射变换、伸压变换、投影变换、切变变换这几种。求经矩阵变换后的解析式常采用数形结合的方法,先观察是属于哪一种变换,然后利用解析几何中的相关点法(转移代入法)来解。

◎ 矩阵与变换的知识扩展

1、矩阵的定义:由m×n个数排成的m行n列的表

称为m行n列矩阵(matrix),简称m×n矩阵。
2、特殊形式矩阵:(1)n阶方阵:在矩阵中,当m=n时,A称为n阶方阵;
(2)行矩阵:只有一行的矩阵叫做行矩阵;
列矩阵:只有一列的矩阵,叫做列矩阵;
(3)零矩阵:元素都是零的矩阵称作零矩阵。
3、矩阵的运算:
(1)矩阵的和(差):当两个矩阵A、B的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A、B的和(差),记作:
运算律:加法运算律:
加法结合律:
(2)数乘矩阵:矩阵与实数的积:设为任意实数,把矩阵A的所有元素与相乘得到的矩阵叫做矩阵A与实数的乘积矩阵,记作:A。
运算律:(
分配律:
结合律:
(3)矩阵的乘积:一般地,设A是m×k阶矩阵,B是k×n阶矩阵,设C为m×n矩阵,如果矩阵C中第i行第j列元素是矩阵A第i个行向量与矩阵B的第j个列向量的数量积,那么矩阵C叫做A与B的乘积,记作:C=AB。
运算律:
分配律:
结合律:
注:(1)交换律不成立,即:AB≠BA;(2)只有当矩阵A的列数与矩阵B的行数相等时,矩阵之积才有意义。
4、二阶矩阵与平面图形的变换:
(1)二阶矩阵的定义:由4个数a,b,c,d排成的正方形数表称为二阶矩阵;
(2)几种特殊线性变换:主要有旋转变换、反射变换、伸压变换、投影变换、切变变换这几种。求经矩阵变换后的解析式常采用数形结合的方法,先观察是属于哪一种变换,然后利用解析几何中的相关点法(转移代入法)来解。

◎ 矩阵与变换的特性

矩阵的运算律:

(1)矩阵的和(差):当两个矩阵A、B的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A、B的和(差),记作:
运算律:加法运算律:
加法结合律:
(2)数乘矩阵:矩阵与实数的积:设为任意实数,把矩阵A的所有元素与相乘得到的矩阵叫做矩阵A与实数的乘积矩阵,记作:A。
运算律:(
分配律:
结合律:
(3)矩阵的乘积:一般地,设A是m×k阶矩阵,B是k×n阶矩阵,设C为m×n矩阵,如果矩阵C中第i行第j列元素是矩阵A第i个行向量与矩阵B的第j个列向量的数量积,那么矩阵C叫做A与B的乘积,记作:C=AB。
运算律:
分配律:
结合律:
注:(1)交换律不成立,即:AB≠BA;(2)只有当矩阵A的列数与矩阵B的行数相等时,矩阵之积才有意义。

◎ 矩阵与变换的教学目标
1、了解矩阵在变换中的重要作用。
2、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
◎ 矩阵与变换的考试要求
能力要求:掌握
课时要求:5
考试频率:不考
分值比重:3

登录并加入会员可无限制查看知识点解析

类题推荐:
矩阵与变换
难度:
使用次数:165
更新时间:2009-03-16
加入组卷
题型:选择题
知识点:矩阵与变换
复制
试题详情
纠错
加入组卷
进入组卷
下载知识点
知识点:
版权提示

该作品由: 用户赵建强分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时199
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利