发布日期:2013-05-11 19:50:25
1.复数的有关概念 (1)复数的概念 形如a+bi(a,b∈R)的数叫复数,其中a,b分别是它的实部和虚部.若b=0,则a+bi为实数,若b≠0,则a+bi为虚数,若a=0且b≠0,则a+bi为纯虚数. (2)复数相等:a+bi=c+di⇔a=c且b=d(a,b,c,d∈R). (3)共轭复数:a+bi与c+di共轭⇔a=c;b=-d(a,b,c,d∈R). (4)复数的模 向量→(OZ)的模r叫做复数z=a+bi(a,b∈R)的模,记作|z|或|a+bi|,即|z|=|a+bi|=. 2.复数的四则运算 设z1=a+bi,z2=c+di(a,b,c,d∈R),则 (1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i; (2)减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i; (3)乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i; (4)除法:z2(z1)=c+di(a+bi)=(c+di)(c-di)((a+bi)(c-di)) =c2+d2((ac+bd)+(bc-ad)i)(c+di≠0). 一条规律 任意两个复数全是实数时能比较大小,其他情况不能比较大小. 两条性质 (1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,in+in+1+in+2+in+3=0(各式中n∈N). (2)(1±i)2=±2i,1-i(1+i)=i,1+i(1-i)=-i. |