如图,四棱锥P―ABCD中,底面ABCD为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.
(Ⅰ)求四棱锥P―ABCD的体积;
(Ⅱ)证明PA⊥BD.
本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题的能力.
解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.
图1
作PO⊥平面ABCD,垂足为O,连结OE.
根据三垂线定理的逆定理得OE⊥AD,
所以∠PEO为侧面PAD与底面所成二面角的平面角.
由已知条件可知∠PEO=60°,PE=6,
所以PO=3,
四棱锥P-ABCD的体积
VP-ABCD=
(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得
P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0).
所以 =(2,-3,-3), =(-4,-8,0).
因为・=-24+24+0=0,
所以PA⊥BD.
图2
解法二:如图2,连结AO,并延长AO交BD于点F.通过计算可得
EO=3,AE=2,又由AD=4,AB=8,
得 .
所以 Rt△AEO∽Rt△BAD,
得 ∠EAO=∠ABD.
所以 ∠EAO+∠ADF=90°,
所以 AF⊥BD.
因为AF为PA在平面ABCD内的射影,
所以 PA⊥BD.
平面的概念:
平面是无限伸展的;
平面的表示:
通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
平面的画法:
①通常把水平的平面画成锐角为45。,横边长等于其邻边长2倍的平行四边形,如图1所示.②如果一个平面被另一个平面挡住,则被遮挡的部分用虚线画出来,如图2所示,
平面的性质:
(1)公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。
用符号语言表示公理1:。
应用:判断直线是否在平面内
(2)公理2:过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:它是空间内确定平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言:P∈α,且P∈βα∩β=l,且P∈l。
公理3的作用:①它是判定两个平面相交的方法;
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点;
③它可以判断点在直线上,即证若干个点共线的重要依据。
立体几何问题的重要方法:
根据平面的基本性质,把空间图形转化为平面图形来解决,这是立体几何中解决问题的重要思想方法.通常要解决以下四类问题:
(l)证明空间三点共线问题:证明这类问题一般根据公理3证明这些点都在两个平面的交线上,即先确定出某两个点在某两个平面上,再证明第三个点既在第一个平面内,又在第二个平面内,当然必在两平面的交线上.
(2)证明空间三线共点问题:证明这类问题一般根据公理l和公理3,把其中一条直线作为分别通过其余丽条直线的两个平面的交线,然后证明两条直线的交点在此直线上.
(3)证明空间点共面问题:可根据公理2,先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.
(4)证明空间直线共面问题一般根据公理2及推论,先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者由这些直线中取适当的两条确定若干个平面,再一一确定这些平面重合.
基本性质2及其三个推论可以用来证明点、线共面,证明此类问题,常用的方法有:
①纳入法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,再证明其余的点和直线也在这个确定的平面内.
②同一法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,另一些点和直线在另外一个确定的平面内,……,最后证明这些平面重合.
③反证法:可以假设这些点和直线不在同一个平面内,然后通过推理,找出矛盾,从而否定假设,肯定结论.
点线面位置关系的符号语言如下表:
登录并加入会员可无限制查看知识点解析