学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.
销售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周数 | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的销售量的频率为今年每周市场需求量的概率.
(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?
(2)如果今年的周进货量为14,写出周利润Y的分布列;
(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?
【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.
【分析】(I)若进货量定为13件,相应有13+13+8+4=38周.可得“进货量不超过市场需求量”的概率P=>0.5;同理:若进货量定为14件,则“进货量不超过市场需求量”的概率
<0.5,即可得出.
(II)今年的周进货量为14,设“平均今年周利润”Y;若售出x件,x≤14时,则利润y=x×3+(14﹣x)×(﹣1).x≥15时,则利润y=14×3+(x﹣14)×2.即可得出Y的分布列.
(III)以周利润的期望值为考虑问题的依据,今年的周进货量定为11件或12件合适.
【解答】解:(I)若进货量定为13件,则“进货量不超过市场需求量”是指“销售两不小于13件”,相应有13+13+8+4=38周.“进货量不超过市场需求量”的概率P=>0.5;同理:若进货量定为14件,则“进货量不超过市场需求量”的概率
<0.5;∴要使进货量不超过市场需求量的概率大于0.5,进货量的最大值是13.
(II)今年的周进货量为14,设“平均今年周利润”Y;若售出10件,则利润y=10×3+4×(﹣1)=26.售出11件,则利润y=11×3+3×(﹣1)=30.售出12件,则利润y=12×3+2×(﹣1)=34.售出13件,则利润y=13×3+1×(﹣1)=38.售出14件,则利润y=14×3=42.售出15件,则利润y=14×3+1×2=44.售出16件,则利润y=14×3+2×2=46.
Y的分布列为:
Y | 26 | 30 | 34 | 38 | 42 | 44 | 46 |
P | | | | | | | |
E(Y)=26×+30×
+34×
+38×
+42×
+44×
+46×
≈32.08.
(III)以周利润的期望值为考虑问题的依据,今年的周进货量定为11件或12件合适.
【点评】本题考查了随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力,属于中档题.
从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是
A.A与C互斥 B.B与C互斥
C.任两个均互斥 D.任两个均不互斥