如图,在直角坐标系中,过坐标原点
作曲线
的切线,切点为
,过点
分别作
轴的垂线,垂足分别为
,向矩形
中随机撒一粒黄豆,则它落到阴影部分的概率为( )
A. B.
C.
D.
A
【分析】
先设出切点,利用切线过原点求出切点P的坐标,再用积分求出阴影部分的面积,最后用几何概型求得结果.
【详解】
设切点,
所以切线方程,又因为过原点
所以解得
所以点P
因为与
轴在
围成的面积是
则阴影部分的面积为
而矩形的面积为
故向矩形中随机撒一粒黄豆,则它落到阴影部分的概率为
故选A
【点睛】
本题主要考查了几何概型,但是解题的关键是在于对于切点和积分的运用是否熟练,属于中档题.
随机事件的定义:
在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:
必然会发生的事件叫做必然事件;
不可能事件:
肯定不会发生的事件叫做不可能事件;
概率的定义:
在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。
m,n的意义:事件A在n次试验中发生了m次。
因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
随机事件概率的定义:
对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
频率的稳定性:
即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;
“频率”和“概率”这两个概念的区别是:
频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
登录并加入会员可无限制查看知识点解析