抛物线x2=py与直线x+ay+1=0交于A、B两点,其中点A的坐标为(2,1),设抛物线的焦点为F,则|FA|+|FB|等于( )
A. B.
C.
D.
C
【解析】
,
由
得|FA|+|FB|等于,选C.
给出下列曲线:
①4x+2y-1=0②x2+y2=3③x2/2+y2=1④x2/2-y2=1其中与直线r=-2x-3有交点的所有曲线是
(A).①③ (B).②④ (C).①②③ (D).②③④