下载试题
当前位置:
学科首页
>
必修部分
>
点 直线 平面之间的位置
>
试题详情
难度:
使用次数:297
更新时间:2021-09-14
加入组卷
1.

如图,在四棱锥 中, 底面 ,底面 为平行四边形, ,且 是棱 的中点 .

1 )求证: 平面

2 )求直线 与平面 所成角的正弦值;

3 )在线段 ( 不含端点 ) 是否存在一点 ,使得二面角 的余弦值为 ?若存在,确定 的位置;若不存在,请说明理由 .

查看答案
题型:解答题
知识点:点 直线 平面之间的位置
纠错
【答案】

1 )证明见解析 . 2 . 3 )存在,

【分析】

1 )连接 于点 ,连接 ,可证 ,从而得线面平行;

2 )由题意以 为坐标原点,分别以 所在直线为 轴, 轴, 轴建立空间直角坐标系,可用向量法求出线面角;

3 )在( 2 )基础上,设 ,求出平面 和平面 (( 2 )中已有)法向量,由法向量夹角与二面角的关系可求得

【详解】

1 )连接 于点 ,连接 .

是平行四边形, 的中点 . 的中点,

平面 平面 平面

2 )以 为坐标原点,分别以 所在直线为 轴, 轴, 轴建立如图所示的空间直角坐标系,则 .

设平面 的法向量为 .

不妨取 ,得

.

设直线 与平面 所成的角为

即直线 与平面 所成角的正弦值为

3 )假设在线段 ( 不含端点 ) 存在一点 ,使得二面角 的余弦值为 . 连接 . .

设平面 的法向量为 .

不妨取 ,得

设二面角 的平面角为

.

化简得

解得 ,或 .

二面角 的余弦值为

.

在线段 上存在一点 ,且 ,使得二面角 的余弦值为 .

【点睛】

本题考查证明线面平行,考查用空间向量法求线面角和二面角,用线面平行的判定定理证线面平行是证明线面平行的掌握方法.在图形中有两两相互垂直的三条直线时,常常是建立空间直角坐标系,用空间向量法研究空间角.这种方法化证明为计算,减少学生的逻辑思维量,但增加了计算量.

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 平面的基本性质 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 平面的基本性质的定义

平面的概念:

平面是无限伸展的;

平面的表示:

通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。

平面的画法:

①通常把水平的平面画成锐角为45。,横边长等于其邻边长2倍的平行四边形,如图1所示.②如果一个平面被另一个平面挡住,则被遮挡的部分用虚线画出来,如图2所示,

◎ 平面的基本性质的知识扩展
1、平面的概念:平面是无限伸展的;
2、平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。
3、平面的性质:
(1)公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。
用符号语言表示公理1:
应用:判断直线是否在平面内
(2)公理2:过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:它是空间内确定平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言:P∈α,且P∈βα∩β=l,且P∈l。
公理3的作用:①它是判定两个平面相交的方法;
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点;
③它可以判断点在直线上,即证若干个点共线的重要依据。
◎ 平面的基本性质的特性

平面的性质:

(1)公理1:如果一条直线的两点在一个平面内,那么这条直线在这个平面内。
用符号语言表示公理1:
应用:判断直线是否在平面内
(2)公理2:过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:它是空间内确定平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号语言:P∈α,且P∈βα∩β=l,且P∈l。
公理3的作用:①它是判定两个平面相交的方法;
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点;
③它可以判断点在直线上,即证若干个点共线的重要依据。

◎ 平面的基本性质的知识点拨

立体几何问题的重要方法:

根据平面的基本性质,把空间图形转化为平面图形来解决,这是立体几何中解决问题的重要思想方法.通常要解决以下四类问题:
(l)证明空间三点共线问题:证明这类问题一般根据公理3证明这些点都在两个平面的交线上,即先确定出某两个点在某两个平面上,再证明第三个点既在第一个平面内,又在第二个平面内,当然必在两平面的交线上.
(2)证明空间三线共点问题:证明这类问题一般根据公理l和公理3,把其中一条直线作为分别通过其余丽条直线的两个平面的交线,然后证明两条直线的交点在此直线上.
(3)证明空间点共面问题:可根据公理2,先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.
(4)证明空间直线共面问题一般根据公理2及推论,先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者由这些直线中取适当的两条确定若干个平面,再一一确定这些平面重合.

基本性质2及其三个推论可以用来证明点、线共面,证明此类问题,常用的方法有:

①纳入法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,再证明其余的点和直线也在这个确定的平面内.
②同一法:先利用基本性质2及其三个推论证明某些点和直线在一个确定的平面内,另一些点和直线在另外一个确定的平面内,……,最后证明这些平面重合.
③反证法:可以假设这些点和直线不在同一个平面内,然后通过推理,找出矛盾,从而否定假设,肯定结论.

◎ 平面的基本性质的知识拓展

点线面位置关系的符号语言如下表:

◎ 平面的基本性质的教学目标
1、理解空间直线、平面位置关系的定义。
2、了解如下可以作为推理依据的公理和定理。
3、会判断直线与平面、平面与平面的位置关系。
◎ 平面的基本性质的考试要求
能力要求:知道
课时要求:40
考试频率:选考
分值比重:3
类题推荐:
点 直线 平面之间的位置
难度:
使用次数:113
更新时间:2009-03-16
加入组卷
查看答案
题型:填空题
知识点:点 直线 平面之间的位置
复制
试题详情
纠错
难度:
使用次数:138
更新时间:2009-03-16
加入组卷
查看答案
题型:选择题
知识点:点 直线 平面之间的位置
复制
试题详情
纠错
下载试题
复制试题
进入组卷
下载知识点
版权提示
可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时299
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利