若 是以
为直角顶点的三角形,且面积为
,设向量
,
,
,则关于
下列说法正确的是( )
A .有最大值为 B .有最小值为
C .有最大值为 D .有最小值为
A
【解析】
【分析】
根据题意设出点坐标,结合向量数量积的坐标运算公式和基本不等式求解即可 .
【详解】
因为 是以
为直角顶点的三角形,
所以如下图所示,不妨设 ,
因为 面积为
,
所以 ,即
,
因为向量 ,
,
,
所以 ,即
,
所以 ,
所以 ,
当且仅当 ,即
时等号成立,
所以 有最大值为
.
故选: A
两个向量的夹角的定义:
对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
两个向量数量积的含义:
如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
两个向量数量积的几何意义:
数量积等于
的模
与
在
上的投影
的乘积。
1、两个向量的夹角:对于非零向量,
,作
称为向量
,
的夹角,当
=0时,
,
同向,当
=π时,
,
反向,
当时,
垂直。
2、含义:如果两个非零向量,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:
,即
。
叫
在
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
3、几何意义:数量积等于
的模
与
在
上的投影
的乘积。
4、向量数量积的性质:设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,
同向时,
;当
与
反向时,
;当
为锐角时,
为正且
,
不同向,
;当
为钝角时,
为负且
,
不反向,
。
登录并加入会员可无限制查看知识点解析