在直角坐标系中,曲线 的参数方程为
,(
为参数,
),以
轴的正半轴为极轴建立极坐标系,曲线
在极坐标系中的方程为
.若曲线
与
有两个不同的交点,则实数
的取值范围是( )
A . B .
C .
D .
A
【分析】消去参数化参数方程为普通方程,由公式 可化极坐标方程为直角坐标方程,由直角坐标方程作出图形,利用数形结合可得参数范围.
【详解】由 ,曲线
的普通方程是
(
),
由 得曲线
的直角坐标方程是
,即
,
作出曲线 ,它是单位圆的上半圆,如图,
直线 过点
时,
,
直线 与半圆相切时,
,
(
舍去),
由图可得 时,直线
与曲线
前两个公共点.
故选: A .
圆的定义:
平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。
圆的标准方程:
圆的标准方程(x-a)2+(y-b)2=r2,,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为x2+y2=r2。
圆的一般方程:
圆的一般方程x2+y2+Dx+Ey+F=0,
当D2+E2-4F>0时,表示圆心在,半径为
的圆;
当D2+E2-4F=0时,表示点;
当D2+E2-4F<0时,不表示任何图形。
圆的定义的理解:
(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.
圆的方程的理解:
(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.即
几种特殊位置的圆的方程:
条件 | 标准方程 | 一般方程 |
圆心在原点 |
![]() |
![]() |
过原点 |
![]() |
![]() |
圆心在x轴上 |
![]() |
![]() |
圆心在y轴上 |
![]() |
![]() |
与x轴相切 |
![]() |
![]() |
与y轴相切 |
![]() |
![]() |
与x,y轴都相切 |
![]() |
![]() |
圆心在x轴上且过原点 |
![]() |
![]() |
圆心在y轴上且过原点 |
![]() |
![]() |
登录并加入会员可无限制查看知识点解析