已知 ,则( )
A . B . C . D .
A
【分析】法一:根据指对互化以及对数函数的单调性即可知 ,再利用基本不等式,换底公式可得 , ,然后由指数函数的单调性即可解出.
【详解】 [方法一]:(指对数函数性质)
由 可得 ,而 ,所以 ,即 ,所以 .
又 ,所以 ,即 ,
所以 . 综上, .
[方法二]:【最优解】(构造函数)
由 ,可得 .
根据 的形式构造函数 ,则 ,
令 ,解得 ,由 知 .
在 上单调递增,所以 ,即 ,
又因为 ,所以 .
故选: A.
【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;
法二:利用 的形式构造函数 ,根据函数的单调性得出大小关系,简单明了,是该题的最优解.
分段函数:
1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;
分段函数是一个函数,定义域、值域都是各段的并集。
抽象函数:
我们把没有给出具体解析式的函数称为抽象函数;
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。
知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究。
登录并加入会员可无限制查看知识点解析