设数列:A:a1,a2,…,an,B:b1,b2,…,bn.已知ai,bj∈{0,1}(i=1,2,…,n;j=1,2,…,n),定义n×n数表,其中xij
.
(1)若A:1,1,1,0,B:0,1,0,0,写出X(A,B);
(2)若A,B是不同的数列,求证:n×n数表X(A,B)满足“xij=xji(i=1,2,…,n;j=1,2,…,n;ij)”的充分必要条件为“ak+bk=1(k=1,2,…,n)”;
(3)若数列A与B中的1共有n个,求证:n×n数表X(A,B)中1的个数不大于.
(1);(2)证明见解析;(3)证明见解析.
【分析】
(1)根据题中给的定义写出X(A,B);
(2)可先证充分性,充分性由定义易证;再证必要性,注意分类讨论:先分a1=0和a1=1两类,a1=0较易证明,对a1=1再分b1=0和b1=1两类证明,运用xij分析推理可得;
(3)根据数列A与B中的1共有n个,设A中1的个数为p,则A中0的个数为n﹣p,B中1的个数为n﹣p,B中0的个数为p.表示出n×n数表X(A,B)中1的个数,再用不等式证得n×n数表X(A,B)中1的个数不大于.
【详解】
(1)解:.
(2)证明:充分性
若ak+bk=1(k=1,2,…,n),由于xij,xji
,
令 A:a1,a2,…,an,由此数列 B:1﹣a1,1﹣a2,…,1﹣an.
由于 ai=bj⇔ai=1﹣aj⇔ai+aj=1⇔aj=1﹣ai⇔aj=bi.
从而有 xij=xji(i=1,2,…,n;j=1,2,…,n;ij).
必要性
若xij=xji(i=1,2,…,n;j=1,2,…,n;ij).
由于A,B是不同的数列,
设a1=1,b1=0,对任意的正整数k>1,
①若x1k=xk1=1,可得 a1=bk=1,ak=b1=0,
所以 ak+bk=1.
②若x1k=xk1=0,可得 bk=0,ak=1,
所以ak+bk=1.
同理可证 ,b1=1时,有ak+bk=1(k=1,2,…,n)成立.
设a1=1,b1=1,对任意的正整数k>1,
①若x1k=xk1=1,可得a1=bk=1,ak=b1=1,
所以有ak=bk=1,则A,B是相同的数列,不符合要求.
②若x1k=xk1=0,可得bk=0,ak=0,
所以有ak=bk,则A,B是相同的数列,不符合要求.
同理可证 a1=0,b1=0时,A,B是相同的数列,不符合要求.
综上,有n×n数表X(A,B)满足“xij=xji”的充分必要条件为“ak+bk=1(k=1,2,…,n)”.
(3)证明:由于数列A,B中的1共有n个,设A中1的个数为p,
由此,A中0的个数为n﹣p,B中1的个数为n﹣p,B中0的个数为p.
若 ai=1,则数表X(A,B)的第i行为数列B:b1,b2,…,bn,
若 ai=0,则数表X(A,B)的第i行为数列B:1﹣b1,1﹣b2,…,1﹣bn,
所以 数表X(A,B)中1的个数为.
所以 n×n数表X(A,B)中1的个数不大于.
【点睛】
本题是以数列、矩阵和分段函数为背景的新概念题目,考查学生的理解能力,应用能力,分类讨论思想,是一道较难的综合题.
数列的定义:
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
1、定义:一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.
登录并加入会员可无限制查看知识点解析