记 为等差数列
的前
项和,已知
,
.
( 1 )求 的通项公式;
( 2 )求 ,并求
的最小值.
( 1 ) a n =2 n –9 ,( 2 ) S n = n 2 –8 n ,最小值为 –16 .
【详解】
分析:( 1 )根据等差数列前 n 项和公式,求出公差,再代入等差数列通项公式得结果,( 2 )根据等差数列前 n 项和公式得 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值 .
详解:( 1 )设 { a n } 的公差为 d ,由题意得 3 a 1 +3 d =–15 .
由 a 1 =–7 得 d =2 .
所以 { a n } 的通项公式为 a n =2 n –9 .
( 2 )由( 1 )得 S n = n 2 –8 n = ( n –4 ) 2 –16 .
所以当 n =4 时, S n 取得最小值,最小值为 –16 .
点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件 .
数列的定义:
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
1、定义:一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.
登录并加入会员可无限制查看知识点解析