记 为数列 的前 n 项和.已知 .
(1) 证明: 是等差数列;
(2) 若 成等比数列,求 的最小值.
(1) 证明见解析;
(2) .
【分析】( 1 )依题意可得 ,根据 ,作差即可得到 ,从而得证;
( 2 )法一:由( 1 )及等比中项的性质求出 ,即可得到 的通项公式与前 项和,再根据二次函数的性质计算可得.
【详解】( 1 )因为 ,即 ① ,
当 时, ② ,
① ② 得, ,
即 ,
即 ,所以 , 且 ,
所以 是以 为公差的等差数列.
( 2 ) [ 方法一 ] :二次函数的性质
由( 1 )可得 , , ,
又 , , 成等比数列,所以 ,
即 ,解得 ,
所以 ,所以 ,
所以,当 或 时, .
[ 方法二 ] :【最优解】邻项变号法
由( 1 )可得 , , ,
又 , , 成等比数列,所以 ,
即 ,解得 ,
所以 ,即有 .
则当 或 时, .
【整体点评】( 2 )法一:根据二次函数的性质求出 的最小值,适用于可以求出 的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
数列的定义:
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
1、定义:一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。
从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.
登录并加入会员可无限制查看知识点解析